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Abstract. We generalize the application of the functional renormalization group (fRG) method for the
fermionic flow into the symmetry-broken phase to finite temperatures. We apply the scheme to the case
of a broken discrete symmetry: the charge-density wave (CDW) mean-field model at half filling. We show
how an arbitrarily small initial CDW order parameter starts to grow at the CDW instability and how
it flows to the correct final value, suppressing the divergence of the effective interaction in the fRG flow.
The effective interaction peaks at the instability and saturates at low energy scales or temperatures. The
relation to the mean-field treatment, differences compared to the flow for a broken continuous symmetry,
and the prospects of the new method are discussed.

PACS. 71.45.Lr Charge-density-wave systems – 71.10.Fd Lattice fermion models (Hubbard model, etc.)

1 Introduction

Renormalization group (RG) techniques are a standard
tool for the analysis of the low-energy physics of inter-
acting fermions [1–3]. Although new effective degrees of
freedom may be generated in the RG flow down to lower
energies, perturbative RG flows with the initial degrees
of freedom — in our case electrons — are considered
the least biased approaches to the variety of competing
and conspiring tendencies at low scales. Without appro-
priate self-energy corrections these flows often diverge at
a nonzero energy scale, and not all fermionic modes can
be integrated out. These divergences are signatures of po-
tential phase transitions, typically involving some kind of
symmetry breaking. Hence, these flows still contain use-
ful physical information. In many cases the physics be-
low the critical scale can be explored by other means,
e.g. by a mean-field treatment [4], by a bosonic descrip-
tion [5], or by exact diagonalization of a restricted low-
energy Hamiltonian [6]. Yet, the latter methods always
require some sort of simplification of the low-energy ac-
tion, and typically the final results depend on the scale
where the transition from one treatment to the other is
performed. Therefore, it is desirable to have an RG scheme
which can be continued beyond the noted divergence and
which allows a controlled access to the low-energy phase.

Recently, Salmhofer et al. [7] have proposed an ex-
tension of the fermionic functional RG flow into the
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symmetry-broken regime. The key idea is to include an
arbitrarily small symmetry-breaking field, which we in-
clude in the RG as a symmetry-breaking component in the
initial condition for the fermionic self-energy. This com-
ponent grows rapidly at the critical scale and prevents
a true divergence of the interactions. Therefore, the flow
can be continued down to the lowest scales. Spontaneous
symmetry breaking is captured by sending the external
symmetry-breaking field to zero after integrating the flow.
For mean-field models like the reduced BCS model, this
procedure yields the exact solution already within a suit-
ably chosen one-loop truncation of the vertex flow [7].

Of course this method should now be extended to
other models and other physical situations. In particu-
lar, the hope is that non-mean-field models like the two-
dimensional Hubbard model will be treatable. There, the
method would yield the flow into symmetry-broken phases
corresponding to correlations for which the initial interac-
tion does not contain an attractive component and where
the attraction is generated during the flow. For exam-
ple, this is the case for d-wave pairing in the Hubbard
model on the two-dimensional square lattice near half fill-
ing. Furthermore, the non-mean-field parts of the interac-
tions would not need to be dropped and their influence
could be studied.

Before proceeding to such more complicated problems,
we extend the application of the formalism to nonzero
temperatures in the context of the charge-density wave
(CDW) mean-field model on a d-dimensional hypercubic
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lattice at half band filling. Again, we closely monitor the
correspondence to mean-field theory. This example is in-
teresting because, in contrast to the BCS model studied
in reference [7], only a discrete symmetry is broken. Hence
we learn about the differences between the RG flows for
broken continuous and discrete symmetries.

This paper is organized as follows. In Section 2 we
introduce the CDW model which we analyze in the re-
mainder. In Section 3 we present an exact solution in the
thermodynamic limit employing a resummation of per-
turbation theory. We briefly introduce the renormaliza-
tion group technique in Section 4 and write down the
functional RG equations for the self-energy and the ef-
fective interaction. In Section 5, these equations are dis-
cussed in the case of vanishing temperature, where they
can be presented in a considerably simpler way. The finite-
temperature equations are treated numerically in Sec-
tion 6. Conclusions and outlook are presented in Section 7.

2 Model

We consider spinless fermions on a d-dimensional hyper-
cubic lattice with N sites labeled by x. The kinetic energy
shall be given by a tight-binding dispersion with nearest-
neighbor hopping amplitude t. Further we assume a re-
pulsive nearest-neighbor density-density interaction V0.
Then, the Hamiltonian reads

H = −t
∑

x,n

(c†xcx+n + h.c.) + V0

∑

x,n

c†xcxc
†
x+ncx+n. (1)

The sum over n runs over the d unit vectors of the
d-dimensional hypercubic lattice with lattice constant set
to one. Now we assume half filling with an average of one
particle per two lattice sites, 〈nx〉 = 1/2. In this case it
is easy to see that the nearest-neighbor density-density
repulsion will favor a charge-density wave (CDW), i.e. a
periodic arrangement of the particles in which the proba-
bility of two particles being nearest neighbors is reduced.
This tendency competes with the hopping term of the ki-
netic energy and with the entropy, which are minimized
and maximized, respectively, for an equal population of all
sites. In the case where a CDW is formed with a fixed mod-
ulation amplitude nCDW, the charge density 〈nx〉 takes
only two values, 1/2± nCDW, on the two inter-penetrating
sublattices with doubled unit cells. Therefore, the half-
filled CDW state breaks a discrete Ising-type symmetry,
and the degeneracy of the ordered state is twofold. While
in one dimension such order can only occur in the ground
state, in two and higher dimension it is possible to have a
nonzero critical temperature Tc.

For general band filling, a CDW with an incommen-
surate modulation wave-vector generates infinitely many
different values of average populations on the lattice sites.
This corresponds to an arbitrary phase of the density
modulation at an arbitrary reference lattice site. Hence
in the incommensurate case the CDW breaks a continu-
ous symmetry.

Continuing with the half-filled case, we Fourier-
transform the Hamiltonian using

cx =
1√
N

∑

k

eikxck (2)

and obtain

H = − 2t
∑

k

L(k) c†kck

+
V0

N

∑

k1,k2,q

L(q) c†k1
ck1−qc

†
k2
ck2+q. (3)

Here we have introduced L(k) =
∑d

i=1 cos(ki). Abbreviat-
ing the dispersion as ξ(k) = −2t

∑d
i=1 cos(ki) = −2tL(k),

we note that the nesting condition ξ(k) = −ξ(k + Q) is
fulfilled for the wave-vector Q = (π, . . . , π). This causes a
divergence of the non-interacting charge response at the
nesting wave-vector for T → 0. If the interactions are
treated in the random phase approximation, the charge
response at Q will actually diverge at a finite temperature,
giving an estimate of Tc for the charge-density wave forma-
tion. In a mean-field treatment of the symmetry breaking
in which the interaction term is decoupled with an al-
ternating charge density, anomalous particle-hole pairing
expectation values 〈c†k+Qck〉 will become nonzero below
the transition temperature.

Although this physical picture of a CDW transition is
essentially correct regarding the ground state properties,
the model (3) cannot be solved exactly. This changes if
we reduce the interactions by only keeping processes that
change both particle’s momenta by Q,

Hred =
∑

k

ξ(k) c†kck

− V0

N

∑

k1,k2

c†k1
ck1−Qc

†
k2
ck2+Q. (4)

Now the interaction between fermions on the lat-
tice sites x and x′ corresponds to an infinite
range density-density interaction with oscillating sign,
−V0N

−1 cos[Q(x − x′)]nxnx′ .
Analogous to the reduced BCS pairing model [8], in the

reduced model (4) mean-field theory becomes exact in the
thermodynamic limitN → ∞ and there is a CDW ordered
state below a critical Tc > 0 in any dimension d. For the
half-filled commensurate case, the CDW state is twofold
degenerate and the electronic order parameter nCDW is
real.

Next we include a real external field ∆ext cos(Qx).
This term breaks the translational symmetry of the orig-
inal Hamiltonian explicitly and lifts the degeneracy of
the two CDW ground states. In momentum space this
term couples to pairs of particles whose momenta differ by
Q = (π, . . . , π). If ∆ext is very small compared to all other
relevant energy scales, it does not change macroscopic ob-
servables away from the critical temperature. However, it
allows us to integrate the RG differential equations over all
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scales without encountering divergences. The Hamiltonian
including the external field reads

Hred =Hkin +
∑

k

∆extc
†
kck+Q

− V0

N

∑

k1,k2

c†k1
ck1+Qc

†
k2
ck2−Q. (5)

We introduce a frequency-space field-integral representa-
tion in the usual way. Writing T for temperature, we de-
fine the fermionic Matsubara frequencies ωj := (2j+1)πT
and obtain Grassmann fields ψk,ωn , ψ̄k,ωn . Introducing the
Nambu-like notation

Ψk,ωn =
(

ψk,ωn

ψk+Q,ωn

)
,

Ψ̄k+Q,ωn =
(
ψ̄k,ωn ψ̄k+Q,ωn

)
,

the partition function reads

Z =
∫

D(ψ̄, ψ) exp

⎡

⎣1
2
T

∑

n,k

Ψ̄k,ωnQ(ξk, ωn)Ψk,ωn

+ V0
T 3

N

∑

n1,n2,n3
k1,k2

ψ̄k1,ωn1
ψk1+Q,ωn3

ψ̄k2,ωn2
ψk2−Q,ω4

]
.

(6)

Here, ω4 = ωn1+n2−n3 and Q is the matrix inverse of the
free Green’s function (see e.g. [9])

G0(ξ, ωn) =
1

ω2
n + ξ2 +∆2

ext

(−iωn − ξ −∆ext

−∆ext −iωn + ξ

)
. (7)

We have dropped the momentum argument of ξ for
brevity. The minus sign in front of the first ξ arises
from the Q-anti-periodicity of the cosine. The doubling
of the number of degrees of freedom by introducing the
Nambu notation is compensated by the 1/2 in front of the
quadratic part of the action. Alternatively, we could inte-
grate over only half the Brillouin zone. Due to the explicit
symmetry breaking, there is a nonzero off-diagonal com-
ponent in the propagator. If we apply mean-field theory
by decoupling the interaction term in the CDW channel,
the CDW order parameter due to the interaction,∆ia, will
add to ∆ext.

3 Mean-field solution and resummation

In this section, we resum the perturbation expansions for
the self-energy and the effective interaction in the thermo-
dynamic limit N → ∞. For our model this is equivalent to
mean-field theory in the CDW amplitude with modulation
wavevector Q.

Due to the explicit symmetry breaking with ∆ext �= 0
there is a nonzero frequency-independent off-diagonal self-
energy which scatters a fermion with wavevector k to
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Fig. 1. Resummation of the perturbation expansion of the
reduced charge-density wave model: (a) self-energy (hatched
circle) and (b) effective interaction (hatched rectangle). Undi-
rected internal lines carry a summation over their Nambu-like
indices in addition to the frequency summation and momentum
integration. Double-arrowed lines correspond to off-diagonal
propagator elements, bold lines to full and thin lines to bare
propagators.

k + Q and vice versa. Therefore, besides normal (diago-
nal) wave-vector conserving propagators, also anomalous
(off-diagonal) propagators appear in the diagrams of the
perturbation theory. As indicated above, compared to the
non-interacting propagator in equation (7), the effect of
the interaction is that we have to supplement ∆ext with
an off-diagonal self-energy ∆ia caused by the interaction.
In the following we determine its value.

Since the interaction term in equation (5) includes a
prefactor 1/N , only diagrams having one summation over
all degrees of freedom per interaction line contribute in
the thermodynamic limit. This together with the special
structure of the interaction entails that only the bubble
diagrams shown in Figure 1b contribute to the perturba-
tion series for the effective interaction in second order of
the bare interaction. In all other second order diagrams
the restricted interaction implies that the internal mo-
mentum is fixed by an external momentum. Then the
contribution of these diagrams is O(1/N) and vanishes
for N → ∞. Furthermore, since each bubble in the re-
maining diagrams transfers a momentum of Q due to the
special structure of the bare interaction, only effective in-
teraction processes with a momentum transfer of Q exist.
This causes the normal diagonal self-energy to vanish as
well. These arguments can be iterated to arbitrary order,
and hence only the bubble chains indicated in Figure 1b
contribute to the perturbation expansion of the effective
interaction. In particular, no anomalous effective interac-
tions which violate the original translation symmetry are
generated. This is different away from half-filling where
pairs of internal anomalous propagators can generate ef-
fective interactions which violate momentum conservation
by adding even multiples of the modulation wavevector Q
to their incoming total momentum. In the half-filled case
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2Q = (2π, . . . , 2π) is a reciprocal lattice vector, and there-
fore no new effective interactions appear.

In Figure 1a we show the perturbation expansion for
the off-diagonal self-energy. Again, due to the special
structure of the interaction only those diagrams which re-
tain one momentum integration per interaction line con-
tribute to the perturbation expansion of the self-energy in
the thermodynamic limit. Furthermore, the interaction is
nonzero only for momentum transfer Q. Thus, in the ther-
modynamic limit only diagrams constructed from tadpole
diagrams contribute. If a tadpole diagram is connected
to at most one other tadpole diagram, only the terms
off-diagonal in the Nambu-like space are non-vanishing.
This is because the outgoing momentum of such an off-
diagonal line equals the incoming momentum plus Q. The
exact resummation is equivalent to self-consistent Hartree-
Fock theory of which the Fock contributions vanish in the
thermodynamic limit. Another way of saying this is that
Hartree mean-field theory is exact in this model.

In the following, we assume the density of states to
be constant over the Brillouin zone and equal to its value
at the Fermi energy to remove dimension-specific effects.
Evaluating Figure 1a and denoting the self-energy due to
the interaction by ∆ia, the band edge by W , the density
of states at the Fermi energy ρ0, Σ := ∆ia +∆ext as well
as E :=

√
ξ2 +Σ2, we obtain the gap equation (compare

e.g. [10])

Σ −∆ext = V0Σρ0

∫ W

0

dξ
tanh(E/2T )

E
(8)

which resembles the BCS [11] and excitonic insulator [12]
gap equations. If we set T = ∆ext = 0, solving equation (8)
analytically yields (compare e.g. [11,13])

Σ = 2t
1

sinh (1/V0ρ0)
V0ρ0�1≈ 4t exp

(
− 1
V0ρ0

)
. (9)

Similar equations are found in the BCS theory for super-
conductors [11].

We now turn to the effective interaction with zero fre-
quency transfer. As argued above, only fermionic bubbles
contribute and all other diagrams vanish in the thermo-
dynamic limit N → ∞. In the notation, we omit the ar-
guments of the hyperbolic functions originating from the
Fermi distribution from now on: they are always E/2T .
Abbreviating the bubble integral

B := ρ0

∫ W

0

dξ
E2

[
Σ2

2T
cosh−2 +

ξ2

E
tanh

]
, (10)

the evaluation of Figure 1b yields

V =
V0

1 − V0B
. (11)

If ∆ext = 0, we can define the critical temperature Tc

via the condition that 1 = V0B(Tc), i.e. that the denom-
inator of equation (11) vanishes and V diverges. By an-
alyzing equation (10) we note that this criterion for Tc

coincides with the temperature below which we can find
a nonzero solution of the gap equation (8). For small V0

and Σ = 0 we find 1.76Tc ≈ 4t exp(−1/V0ρ0) ≈ Σ(T = 0)
(see e.g. [13]). This is true when the approximation in
equation (9) is valid.

As a finite ∆ext will later allow us to integrate the
renormalization group equations over all scales, we are in-
terested in the dependence of the mean-field solutions (8)
and (11) on ∆ext. In particular, we will illustrate where
the system including a finite symmetry-breaking field (5)
is practically indistinguishable from the system without
symmetry-breaking field, (4). To this end, we show in
the upper part of Figure 2 convergence of Σ∆ext(T ) to
Σ(T ) for ∆ext → 0. The convergence is worst in the vicin-
ity of a kink that can be discerned at T ≈ 0.1t in the
graph for ∆ext = 0. We would like to be more concrete
about the temperature range in which the system includ-
ing a symmetry-breaking field can be used to approximate
the system without symmetry-breaking field. To deter-
mine more precisely the temperature range in which the
symmetry-breaking field has little impact on the physics
of the system, we consider the dependence of the effec-
tive interaction on both temperature and the symmetry-
breaking field as plotted in the lower part of Figure 2. Its
singularity is regularized by a nonzero ∆ext which cuts
off the integrand of the bubble integral (10). The figure
also shows a strong suppression of the effective interaction
peak with increasing ∆ext (the dependence of the peak
height on ∆ext is plotted in Fig. 7). Its location converges
to Tc from above for ∆ext → 0. In the figure, we also spot
convergence of V ∆ext(T ) to V (T ) for T � Tc and T 	 Tc.
We see that V ∆ext(T ) ≈ V (T ) if T is outside the double
width at half maximum of V ∆ext(T ). If T is outside said
width and also below Tc, we learn from the upper part of
the figure that Σ∆ext(T ) ≈ Σ(T ). This is thus the temper-
ature region in which the initial symmetry-breaking field
does not appreciably change the physics.

4 Renormalization group setup

We will now apply the one-particle irreducible (1PI)
functional renormalization group scheme to the charge-
density-wave. The scheme is described in [1] (see also [14])
and is here employed in the version suggested by
Katanin [15]. In this version, the differential equations for
the self-energy and four-point function constitute a closed
system. The special structure of our bare interaction will
allow us to further simplify the equations. We will see that
in contrast to the BCS flow [7], no anomalous effective
interactions are generated. In later sections, we will ver-
ify numerically that the fRG reproduces the resummation
results.

Following [1], we introduce a positive real parame-
ter s and a cutoff Λ := 2t exp(−s). In our calculations,
all modes satisfying |ξ| > Λ have been integrated out.
The effective interaction and self-energy at this scale can
thus be interpreted as parameters of an effective theory
for a reduced system with smaller bandwidth. We start
the flow at s = 0 (Λ = 2t), where all modes have yet to
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Fig. 2. (Top) Solutions Σ(T ) of the gap equation for V0 = 2t
and small to intermediate initial self-energies ∆ext. (Bottom)
Temperature dependence of the effective interactions calcu-
lated by resumming the perturbation expansion for V0 = 2t
and small to intermediate initial self-energy. ρ0 = 1/2π for all
numerical calculations.

be integrated out, and integrate the flow down to Λ = 0.
To analytically implement this procedure, we introduce
χ(ξ, Λ) as a placeholder for any cutoff function, which
shall have range [0, 1], assume the value 1/2 when Λ = ξ,
approach 0 when reducing ξ below Λ and 1 when increas-
ing ξ above Λ. We replace Q(ξ) by Q(ξ)/χ(ξ, Λ), suppress-
ing low-energy modes in the field integral and rendering
the self-energy and effective interaction scale-dependent.
In the following, dots over symbols will denote differenti-
ation with respect to s. In the diagrammatic representa-
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Fig. 3. The hierarchy of flow equations for the self-energy and
the effective interaction.

tions, a heavy line represents a scale-dependent full prop-
agator (calculated with the scale-dependent self-energy),
a hatched circle represents the scale-dependent self-energy
and a hatched rectangle represents the scale-dependent ef-
fective interaction. We furthermore introduce the single-
scale propagator S := GQ̇G (all scale-dependent). A line
drawn through propagator lines indicates an s-derivative.

In the flow of the effective interaction, having
∂s(GG) [15] instead of SG + GS as in the original 1PI
RG scheme [1] is crucial in order to be able to follow the
flow down to Λ = 0. In the Katanin version of the 1PI
scheme, the exact hierarchy of RG differential equations
with the exception of the first equation is written using
only full four-point functions, full propagators and scale-
differentiated full propagators on the right-hand sides. The
differential equations for the self-energy and the four-point
function thus constitute a closed system. In particular,
the contribution to the flow of the four-point function
which involves the six-point function in the standard 1PI
scheme [1] is taken into account in the Katanin scheme
by diagrams involving only four-point functions and full
or scale-differentiated full propagators, respectively. The
part with overlapping loops of this contribution vanishes
for the special structure of the interaction and the ther-
modynamic limit considered here. The remaining part of
this contribution is taken into account by the replacement
of the single-scale propagator by the scale-differentiated
full propagator. Hence, the graphical form of the fRG dif-
ferential equations is as shown in Figure 3.

In the flow equation for the effective interaction (right
part of Fig. 3), the summation over the ‘Nambu’ indices of
the internal lines includes normal and anomalous propaga-
tors. Analogous to the perturbation expansion in the pre-
vious section, in the limit N → ∞ the special momentum
structure of the initial interaction is conserved by the RG
flow of the effective interaction. In the present half-filled
case, no new effective interactions with different external
legs are generated. This is in contrast to the BCS pairing
model, where U(1)-symmetry-breaking vertices with four
incoming or four outgoing legs are generated. Linear com-
binations of normal and anomalous components of the ef-
fective interaction could be identified with ‘amplitude’ and
‘phase’ vertices. In the half-filled CDW model the effective
interaction behaves like the ‘amplitude’ vertex of the BCS
problem, while the ‘phase’ vertex is missing as there is no
breaking of a continuous symmetry. The self-energy only
contains the off-diagonal part of the single-scale propaga-
tor, again due to the restricted form of the interaction. For
a derivation see [1] and [7]. Reference [7] also provides an
analytical proof of the equivalence of the flow equations
(Fig. 3) and the resummation equations (Fig. 1).
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Evaluating the diagrams of Figure 3, we suppress scale
and frequency dependence in the notation and write E :=√
ξ2 + χ2Σ2. The RG differential equations now read

V̇ =ρ0V
2

⎧
⎨

⎩
Λ

E

(
Λ2

E2
tanh +

Σ2β

2E
cosh−2

)∣∣∣∣ξ=Λ
χ=1

−
∫ W

Λ

dξ
E

ΣΣ̇

E2

[
3ξ2

E2

(
tanh−βE

2
cosh−2

)

+β2Σ2 tanh
2 cosh2

]⎫
⎬

⎭ , (12)

Σ̇ = V
Σρ0Λ

E
tanh

∣∣∣∣ξ=Λ
χ=1

, (13)

where we have used S = χ̇∂G/∂χ, the limit of a sharp cut-
off, and equation (3.19) of [16] (The simplification of the
equations obtained using the limit of a sharp cutoff is due
to Tilman Enss). The initial conditions are Σ |s=0 = ∆ext

and V |s=0 = V0. If we choose ∆ext = 0, Σ remains zero
for all scales. Then only the first term in equation (12) re-
mains, and the flow will diverge at a nonzero scale Λc. We
would thus be neither able to integrate over all scales nor
compare our results to the resummation of Section 3. We
therefore always study the RG equations for a finite ∆ext,
usually 10−4t. We will show that we can thereby circum-
vent the divergence of the effective interaction and still
get arbitrarily close to the exact mean-field results with-
out explicit symmetry breaking in the temperature range
determined in Section 3.

5 Renormalization group at zero temperature

We first consider zero temperature, T = 0. In this case,
it is easier to write down the analytical expressions, the
roles of the different right-hand side terms are easily iden-
tifiable, and the value of the effective interaction at Λ = 0
is nearly independent of ∆ext, as Λc is larger than the
double width at half maximum of the effective interaction
flow peak (see Fig. 4, lower part).

In the limit T → 0, equations (12) and (13) become

− d
dΛ

V = V 2 Λ2ρ0√
Λ2 +Σ2

3 − 3V 2Σ

(
−dΣ

dΛ

) ∫ W

Λ

dξ
ξ2ρ0

E5
,

(14)

− d
dΛ

Σ = V Σρ0
1√

Λ2 +Σ2
. (15)

Notice that we have replaced the usual derivative with re-
spect to s by −Λd/dΛ. The typical shapes of this flow are
exhibited in Figure 4. We see that the divergence of the
effective interaction is regularized by the initial symmetry-
breaking field. Hence, we can integrate out all modes of the
fermionic spectrum. The four-point function in the CDW
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Fig. 4. Low-energy portions of the T = 0 flows of the self-
energy (top) and effective interaction (bottom) for V0 = 2t
and various ∆ext. ρ0 = 1/2π for all numerical calculations.
Compare with Figure 2.

problem behaves analogously to the linear combination
of normal and anomalous four-point functions in the BCS
problem [7] which drives the flow of the pairing amplitude.
The Λ-dependence of Σ around the scale where V peaks
approaches a kink for ∆ext → 0. The graph of Σ(Λ) re-
sembles the graph of Σ(T ), showing that temperature acts
in a similar fashion as the cutoff in this system. The main
difference between the graphs is that Σ(T → 0) saturates
exponentially while Σ(Λ→ 0) is linear.

The impact of the self-energy feedback on the RG
flow can be thoroughly understood by analyzing the terms
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appearing in equations (14) and (15). Bear in mind that
we think of the flow as progressing from larger to smaller
values of Λ, i.e. from right to left in our plots. We first
consider the limit Σ = 0. Now, the self-energy no longer
flows while the effective interaction flows according to
−dV/dΛ ∝ V 2/Λ. For any positive V0, the solution of
the corresponding initial value problem is singular, show-
ing that at T = 0 symmetry is broken for all repulsive
initial interactions.

An arbitrarily small initial symmetry-breaking field
immediately has dramatic consequences: As soon as V be-
gins to increase strongly, so does the self-energy due to the
coupled effects of a large V and a back-feeding Σ on the
RHS of equation (15). The second term on the RHS of
equation (14) is negative. It corresponds to a correction of
the flow by the modes which have been integrated over at
Λ′ = ξ > Λ reflecting that their self-energy Σ is changing
in the flow. It becomes large as the slope of Σ exceeds Σ
itself, while the positive first term is damped by an ef-
fective Λ2/Σ−3-dependence as soon as Σ becomes much
larger than Λ. The effective interaction is hence pulled
back down. It never reaches zero since the negative sec-
ond term on the RHS of equation (14) becomes propor-
tional to V 3 while the positive first term becomes pro-
portional to V 2 (dΣ/dΛ is O(V )). This implies that the
self-energy never decreases. The two terms on the RHS
of equation (14) thus approach mutual cancellation, caus-
ing V and in turn −dΣ/dΛ to be almost constant in Λ
(the contributions from Σ on the RHS of equation (15)
cancel when Σ 	 Λ).

The behavior described above remains qualitatively
the same at finite temperatures, as long as these are be-
low the double width at half maximum of V ∆ext(T ). This
is illustrated by the lowest-temperature curve of the lower
panel of Figure 5. The shape of V (Λ) is very similar to the
shape of V (T ) in the lower part of Figure 2. As it is found
in many one-dimensional problems, temperature thus has
an effect comparable to that of an energy or momentum
cutoff, respectively, as implemented here.

6 Renormalization group at finite
temperatures

We now turn to the analysis of the finite temperature fRG
equations (12) and (13). Due to their more involved na-
ture, the analysis is largely numeric. We find the same
behavior as calculated using the conventional resumma-
tion methods applied in Section 3. The initial symmetry-
breaking field plays the same crucial role as in the zero-
temperature case. We use a coupling of V0 = 2t in the
following.

The upper plot of Figure 5 shows how the flow of the
self energy flattens out when the temperature is increased
beyond T ≈ 0.1t. Above Tc, Σ(Λ = 0) vanishes in the
limit ∆ext → 0. The RG flow of the effective interaction
is shown in the lower panel of Figure 5. The graph of the
flow is pushed to the left with increasing temperature,
its shape remaining largely unchanged. As the maximum
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Fig. 5. Flows of the self-energy Σ and the effective interac-
tion V plotted against Λ for temperatures around the transi-
tion, V0 = 2t and ∆ext = 10−4t. ρ0 = 1/2π for all numerical
calculations.

approaches zero, the final value of the effective interaction
increases until the maximum has reached Λ = 0. This
corresponds to the behavior of the effective interaction
on the low-temperature side of Figure 2 (lower part). For
even higher temperatures, the final value of the effective
interaction decreases, corresponding to the behavior on
the high-temperature side of Figure 2.

The lower part of Figure 6 shows that Λc(T ) saturates
quickly far below the critical temperature. It also illus-
trates the motion of the effective interaction flow maxi-
mum, which is pushed to lower scales by an increase in
temperature as described above. It approaches zero in a
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effective interaction against temperature for small to interme-
diate ∆ext. ρ0 = 1/2π for all numerical calculations.

linear fashion with increasing temperature, in contrast to
Σ(T → Tc), which exhibits a square-root behavior.

We are furthermore interested in the dependence of
the flow of the self-energy at finite temperatures on ∆ext.
In contrast to the resummation treatment case (see the
upper part of Fig. 2), we cannot set ∆ext to 0 as the effec-
tive interaction would diverge before the flow reaches zero
scale. However, the upper part of Figure 4 implies that

lim∆ext→0Σ∆ext(Λ) exists and is approached in a contin-
uous fashion.

For T > 0, if ∆ext is one or two percent of the final
Σ, there is a clearly observable steep rise (see the upper
part of Fig. 5) which would allow a rather precise determi-
nation of Tc even in more complicated models. However,
note that for these values of ∆ext, the effective interaction
at the critical scale still reaches values ∼100t which are
much larger than the bandwidth (see, e.g., the lower part
of Fig. 7 for the temperature evolution). The agreement
between fRG and mean-field results despite the fact that
the effective interaction has grown to values large enough
to render any perturbative scheme useless in any general
model underlines that the truncated fRG is exact for our
model.

At the T -dependent critical scale Λc, the effective in-
teraction reaches a maximum whose height depends sin-
gularly on ∆ext (see Fig. 7). A numerical analysis shows
that the maximal effective interaction is ∝1/∆α

ext with
α ≈ 2/3. The values for the maximal effective interac-
tion can be read off for T = 0 in Figure 4(bottom) and
for finite temperatures in the lower part of Figure 7. For
a straightforward application of the method to non-mean-
field models, it may be necessary to restrict the maximum
of the effective interaction to smaller values to justify a
perturbative treatment. Then the rise of ΣΛ=0(T ) at Tc

gets smeared out strongly (see Fig. 6 (upper part) and
Fig. 2 (upper part)). The upper part of Figure 7 shows
that far below Tc, the relative error ∆Σ/Σ is linear in
∆ext. At the highest considered ∆ext, it is already of the
order of 0.1 while V (Λc) is still larger than two times the
bandwidth.

7 Conclusion

We have applied the functional renormalization group to a
simple model for the CDW transition of spinless fermions
on a hypercubic lattice in d spatial dimensions. The main
purpose was to test and further understand the recently
developed method for the fRG flow into symmetry-broken
phases in the case of a broken discrete symmetry and to
generalize it to finite temperatures.

Earlier RG treatments of low-dimensional interacting
fermions generically encountered flows to strong coupling
where a class of coupling constants becomes too large to be
treatable perturbatively. Then, the flow had to be stopped.
While these flows still contain ample information about
the low-energy physics of the system, a continuation down
to lowest scales is desirable to obtain a controlled access
to possible symmetry-broken phases. A recent treatment
of the BCS model showed that the divergence of the inter-
actions at finite RG scale can be avoided by introducing
a small initial symmetry-breaking field. Furthermore, a
correct treatment of the flow of the corresponding anoma-
lous self-energy yields the correct value for the energy gap
at zero scale. The interaction vertex corresponding to the
Goldstone boson in the case of breaking of the continu-
ous U(1) symmetry still becomes large ∝1/∆ext when the
initial symmetry-breaking field ∆ext is sent to zero.
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Here we applied this method to the CDW problem
with a half-filled band. Including a small initial anoma-
lous CDW self-energy ∆ext �= 0 we found that the flow of
the effective interaction goes through a maximum at the
critical scale Λc and falls off below. In this case, the effec-
tive interaction does not become large as Λ → 0 and no
anomalous interactions are generated, reflecting the fact
that the discrete symmetry breaking of the commensurate
CDW does not produce a Goldstone mode. At Λc, the

anomalous self-energy Σ corresponding to the strength of
the discrete symmetry breaking rises steeply from its ini-
tial value ∆ext, and finally approaches a finite value for
Λ → 0. Letting ∆ext → 0, we found that ΣΛ=0 converges
to the exact result from the case without explicit symme-
try breaking, ∆ext = 0.

Studying the flow at nonzero temperatures, we have
noted that the temperature dependence of the critical
scale differs qualitatively from the temperature depen-
dence of the offdiagonal self-energy, i.e. no square-root
like rise of Λc(T ) is found below Tc. Therefore, Λc(T ) is
only a rough estimate for the self-energy. Thus, a proper
treatment of the flow of the self-energy into the symmetry-
broken phase is needed in order to assess the temperature
dependence of the spectral gap.

Similar to the BCS problem, the maximal value of the
effective interaction at Λc depends crucially on the ex-
plicit symmetry breaking ∆ext. For the mean-field model
we have investigated in the present work, the truncated
RG scheme is exact. Thus, large effective interactions do
not cause problems. However, for the practical applica-
tion of the fRG scheme to non-mean-field models where
our truncated RG scheme is not exact it is necessary that
the interactions do not become too large at any scale.
Otherwise the feedback of the interactions in the order-
ing channel on processes in other channels would become
large and the perturbative RG would break down. In the
case of the breaking of a discrete symmetry studied here,
the only region where the interactions become large at
zero temperature is near Λ ≈ Λc. There, however, our
explicit calculation shows that if we want to stay close to
the mean-field results without explicit symmetry breaking
we cannot choose too large a ∆ext. This in turn leads to
maximal values of the effective interaction which are much
larger than the bandwidth. If one wants to work with
couplings which stay within the order of the bandwidth
(or expressed differently, with dimensionless coupling less
than one), the deviations from the ∆ext = 0 results are
rather large. At finite temperatures, the explicit symme-
try breaking smears out the transition. Again, the onset
of the growth of the off-diagonal self-energy only allows
for a reasonable definition of a critical temperature when
the maximal effective interaction is allowed to get large.

On the one hand, the large effective interactions dis-
cussed above could spoil the application of this truncated
RG scheme to non-mean-field models. On the other hand,
one should keep in mind that in non-mean-field models
large effective interactions only occur for a narrow range of
frequencies and momenta, if the bare interaction is weak.
Hence, the feedback of these large interactions into other
interaction channels will be strongly reduced by phase-
space factors. It will be interesting to see how this physics
saves or destroys for more general types of interactions
the mean-field picture of the reduced models. In particu-
lar, the space dimension plays a crucial role in this respect.
Understanding these issues could provide insights into the
emergence of short-range ordered states in a weak cou-
pling picture.
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With the steps outlined in this article, we believe that
the fRG flow into symmetry-broken states is well-under-
stood for mean-field-type models. In the future it can be
generalized to more complicated models, where it will re-
veal its full usefulness. Finally, we note that an alternative
method for the flow into the symmetry-broken phase based
on a two-particle irreducible RG formalism has been put
forward by Dupuis [17]. It will be interesting to explore
the applicability of these new RG schemes in more realistic
models.

We thank Tilman Enss, Andrey Katanin, Julius Reiss and
Manfred Salmhofer for useful discussions.
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